
Estimate crosswalk between cognitive measures
crosswalk.Rd
Estimate crosswalk between cognitive measures
Usage
crosswalk(
cog1,
cog2,
data,
niter = NULL,
condition_by = NULL,
condition_loop = FALSE,
control = NULL
)
est_cw_coef(cog1, cog2, data, method = "lm")
Arguments
- cog1
The name of the first cognitive measure column
- cog2
The name of the second cognitive measure column
- data
A data.table, data.frame, matrix, or list containing the cognitive measure data
- niter
Number of iterations to conduct for an unconditional split routine
- condition_by
The name of a conditioning variable by which splits will be conducted. If not conducted, the function will use unconditional splits.
- condition_loop
Whether to conduct conditional splitting sequentially. Defaults to FALSE to maximize speed. Unused if
condition_by
is NULL. See documentation formake_conditional_splits()
for details.- control
A list of settings passed to
bootstrap_crosswalk()
. Seeboot_control()
for more information.- method
Either 'lm' (recommended) or 'manual'. The former will fit a linear regression model and return the fit object, while the latter will return a table containing the covariance between the cognitive measures (
cov
), the variance of the measure input as cog1 (var
), and the estimated sloped (coef
).
Details
Unlike crosswalk()
, which uses splitting to estimate the sample coefficient,
est_cw_coef()
calculates the coefficient based on summary statistics from the input
data: cov(cog1, cog2) / var(cog1).
Examples
# linear model estimate of slope (no splitting)
crosswalk(cog1 = "mmse", cog2 = "moca", data = cogsim) # linear model
#> $cog1
#> [1] "mmse"
#>
#> $cog2
#> [1] "moca"
#>
#> $fit
#>
#> Call:
#> lm(formula = moca ~ mmse)
#>
#> Coefficients:
#> (Intercept) mmse
#> -11.070 1.247
#>
#>
#> $diffs
#> NULL
#>
#> $condition_var
#> NULL
#>
#> attr(,"class")
#> [1] "cogxwalkr" "list"
# unconditional split method
crosswalk(cog1 = "mmse", cog2 = "moca", data = cogsim, niter = 500)
#> $cog1
#> [1] "mmse"
#>
#> $cog2
#> [1] "moca"
#>
#> $fit
#>
#> Call:
#> lm(formula = moca ~ mmse - 1)
#>
#> Coefficients:
#> mmse
#> 1.154
#>
#>
#> $diffs
#> Key: <iteration>
#> iteration mmse moca
#> <int> <num> <num>
#> 1: 1 0.006113236 -0.10336236
#> 2: 2 -0.068389043 0.08417786
#> 3: 3 0.026665589 0.23575146
#> 4: 4 -0.112062792 0.29997756
#> 5: 5 0.016389412 -0.01087677
#> ---
#> 496: 496 0.021527500 0.05848742
#> 497: 497 -0.096648528 -0.26521214
#> 498: 498 0.126858308 0.14583491
#> 499: 499 -0.153167498 -0.07253383
#> 500: 500 0.316967571 0.39503219
#>
#> $condition_var
#> NULL
#>
#> attr(,"class")
#> [1] "cogxwalkr" "list"
# conditional split method
crosswalk(cog1 = "mmse", cog2 = "moca", data = cogsim, condition_by = "dementia")
#> $cog1
#> [1] "mmse"
#>
#> $cog2
#> [1] "moca"
#>
#> $fit
#>
#> Call:
#> lm(formula = moca ~ mmse - 1)
#>
#> Coefficients:
#> mmse
#> 1.391
#>
#>
#> $diffs
#> Key: <iteration>
#> iteration mmse moca
#> <int> <num> <num>
#> 1: 1 1.413949 2.095739
#> 2: 2 1.365138 2.131706
#> 3: 3 1.547540 1.933890
#> 4: 4 1.401104 2.010961
#> 5: 5 1.354861 1.743780
#> ---
#> 200: 200 -1.494209 -1.963350
#> 201: 201 -1.322083 -1.732136
#> 202: 202 -1.437690 -2.073819
#> 203: 203 -1.442828 -1.876003
#> 204: 204 -1.532744 -2.202271
#>
#> $condition_var
#> [1] "dementia"
#>
#> attr(,"class")
#> [1] "cogxwalkr" "list"
# regardless of the method, request bootstrap via `control`
crosswalk(cog1 = "mmse", cog2 = "moca", data = cogsim,
control = list(nboot = 1000, seed = 999, ncores = 4))
#> Running bootstraps over 4 cores ...
#> $cog1
#> [1] "mmse"
#>
#> $cog2
#> [1] "moca"
#>
#> $fit
#>
#> Call:
#> lm(formula = moca ~ mmse)
#>
#> Coefficients:
#> (Intercept) mmse
#> -11.070 1.247
#>
#>
#> $diffs
#> NULL
#>
#> $condition_var
#> NULL
#>
#> $boot
#> $boot$dist
#> [1] 1.274596 1.221208 1.264444 1.245859 1.180395 1.190440 1.215705 1.232131
#> [9] 1.234169 1.241227 1.249037 1.320811 1.298295 1.167544 1.260856 1.257423
#> [17] 1.253188 1.244445 1.312177 1.280707 1.208502 1.247405 1.161740 1.219044
#> [25] 1.280191 1.254177 1.193916 1.225698 1.267886 1.271820 1.210074 1.258036
#> [33] 1.275335 1.208713 1.231616 1.219710 1.253975 1.221223 1.217089 1.226039
#> [41] 1.288247 1.304841 1.271135 1.292803 1.189331 1.181546 1.194043 1.239775
#> [49] 1.175737 1.278502 1.246735 1.241104 1.172560 1.287866 1.235662 1.263956
#> [57] 1.278280 1.239022 1.282405 1.281332 1.270828 1.239372 1.298912 1.236554
#> [65] 1.255027 1.309107 1.322183 1.187105 1.241612 1.285918 1.307393 1.261218
#> [73] 1.259388 1.239004 1.266679 1.219131 1.200702 1.242076 1.190152 1.228391
#> [81] 1.181724 1.280380 1.289674 1.282001 1.333064 1.279781 1.201367 1.259975
#> [89] 1.303235 1.177036 1.242619 1.299629 1.227152 1.208487 1.285746 1.250272
#> [97] 1.237970 1.230404 1.248566 1.223779 1.304132 1.265994 1.239268 1.251651
#> [105] 1.255432 1.247587 1.188457 1.217352 1.260511 1.192856 1.278955 1.202642
#> [113] 1.304210 1.280963 1.247507 1.291098 1.280711 1.261394 1.227956 1.264638
#> [121] 1.219283 1.211812 1.281027 1.214233 1.233483 1.269039 1.201769 1.265329
#> [129] 1.178396 1.192874 1.234480 1.219597 1.214962 1.251873 1.217415 1.143466
#> [137] 1.250688 1.315937 1.284652 1.176314 1.221997 1.233034 1.229308 1.192408
#> [145] 1.200482 1.190200 1.232120 1.231574 1.195226 1.278550 1.268043 1.238569
#> [153] 1.211288 1.270294 1.170375 1.255144 1.257842 1.236024 1.265442 1.241731
#> [161] 1.275988 1.205412 1.292042 1.177728 1.197894 1.279427 1.241724 1.267943
#> [169] 1.232379 1.266117 1.237867 1.259539 1.208754 1.231989 1.299182 1.245394
#> [177] 1.226480 1.272591 1.212434 1.233650 1.293750 1.232095 1.226421 1.240184
#> [185] 1.248459 1.231287 1.292210 1.271151 1.249428 1.225004 1.181242 1.236167
#> [193] 1.299299 1.268002 1.287079 1.221381 1.255498 1.268002 1.189178 1.229027
#> [201] 1.262700 1.283952 1.194663 1.193272 1.255389 1.188322 1.247203 1.240663
#> [209] 1.256527 1.289594 1.267170 1.241816 1.232800 1.258068 1.245468 1.245134
#> [217] 1.244342 1.272440 1.236955 1.279088 1.217975 1.285589 1.226803 1.213793
#> [225] 1.144694 1.231896 1.246768 1.288800 1.299916 1.227153 1.270757 1.233335
#> [233] 1.241779 1.265645 1.228998 1.318920 1.199850 1.241856 1.283544 1.255696
#> [241] 1.239879 1.265980 1.212010 1.311619 1.242234 1.279702 1.233622 1.316913
#> [249] 1.230757 1.204561 1.210166 1.206142 1.243695 1.254966 1.215963 1.216444
#> [257] 1.252611 1.225399 1.242516 1.286689 1.235912 1.234006 1.192926 1.214778
#> [265] 1.206994 1.250026 1.235012 1.246841 1.261648 1.209852 1.241408 1.259078
#> [273] 1.290130 1.274229 1.223499 1.250500 1.255657 1.183735 1.211867 1.286013
#> [281] 1.182313 1.215466 1.196930 1.198744 1.245337 1.195750 1.260821 1.304825
#> [289] 1.209727 1.246712 1.261280 1.226564 1.238671 1.259143 1.264251 1.295984
#> [297] 1.264779 1.243914 1.261951 1.258404 1.233801 1.243167 1.288866 1.217997
#> [305] 1.269397 1.268674 1.251033 1.235547 1.202926 1.271941 1.213950 1.243080
#> [313] 1.216089 1.208329 1.224127 1.298320 1.272521 1.252306 1.262030 1.310934
#> [321] 1.231898 1.203642 1.239215 1.252252 1.233146 1.161089 1.239469 1.219930
#> [329] 1.156362 1.311342 1.238372 1.219447 1.211123 1.282591 1.207641 1.253076
#> [337] 1.362464 1.210510 1.219459 1.262245 1.263135 1.250633 1.221064 1.234950
#> [345] 1.259507 1.258352 1.268740 1.241981 1.246890 1.331443 1.232709 1.248417
#> [353] 1.250070 1.201798 1.234855 1.285382 1.277998 1.251479 1.226967 1.259958
#> [361] 1.269810 1.242627 1.189820 1.250327 1.218764 1.257074 1.255982 1.171719
#> [369] 1.299892 1.229929 1.257017 1.182153 1.284651 1.266629 1.235882 1.205512
#> [377] 1.210366 1.247493 1.197540 1.221919 1.187035 1.318176 1.255846 1.260150
#> [385] 1.228517 1.269967 1.303741 1.241027 1.206452 1.265104 1.263017 1.252010
#> [393] 1.271454 1.258537 1.277884 1.220849 1.203265 1.233557 1.239546 1.262477
#> [401] 1.222780 1.288306 1.282150 1.203410 1.264697 1.267740 1.247644 1.251547
#> [409] 1.268866 1.298260 1.242979 1.309857 1.228181 1.363755 1.244732 1.207169
#> [417] 1.293631 1.243792 1.225039 1.201803 1.233154 1.217391 1.323769 1.260173
#> [425] 1.241498 1.193782 1.243495 1.254227 1.214588 1.174696 1.190989 1.209200
#> [433] 1.257855 1.256555 1.230672 1.215460 1.245353 1.225159 1.203792 1.269385
#> [441] 1.295232 1.283026 1.265252 1.241295 1.221425 1.248946 1.291653 1.293147
#> [449] 1.226511 1.229579 1.249316 1.312001 1.221061 1.228345 1.263175 1.217301
#> [457] 1.195103 1.280082 1.250678 1.260830 1.156355 1.248977 1.268785 1.237767
#> [465] 1.257374 1.238753 1.221668 1.208967 1.183161 1.211201 1.223256 1.322702
#> [473] 1.238788 1.265141 1.234353 1.241151 1.201498 1.254436 1.231309 1.227766
#> [481] 1.300803 1.209924 1.286740 1.218073 1.222739 1.218927 1.239384 1.226833
#> [489] 1.301310 1.178972 1.255159 1.235621 1.320903 1.254979 1.267707 1.201685
#> [497] 1.257792 1.201786 1.237752 1.244138 1.252237 1.251006 1.271490 1.235624
#> [505] 1.205925 1.185394 1.245847 1.225617 1.287032 1.246468 1.264962 1.251186
#> [513] 1.317972 1.262458 1.212683 1.278743 1.226663 1.254832 1.227140 1.215002
#> [521] 1.316874 1.273206 1.259260 1.229622 1.282708 1.216401 1.264431 1.289008
#> [529] 1.230914 1.240666 1.186763 1.285260 1.250040 1.250542 1.215819 1.240163
#> [537] 1.247345 1.264415 1.249590 1.186216 1.253117 1.268090 1.271882 1.239552
#> [545] 1.320945 1.222936 1.221014 1.191449 1.204341 1.252500 1.263631 1.233672
#> [553] 1.204560 1.280748 1.239224 1.263918 1.249107 1.274722 1.269231 1.220509
#> [561] 1.252781 1.294338 1.238728 1.222418 1.225264 1.199420 1.280851 1.210418
#> [569] 1.257673 1.175920 1.210494 1.218332 1.263801 1.257171 1.232490 1.291196
#> [577] 1.258885 1.263697 1.216502 1.228347 1.270656 1.274686 1.244263 1.253024
#> [585] 1.238986 1.247004 1.261779 1.168214 1.271599 1.205493 1.270105 1.217943
#> [593] 1.208215 1.259520 1.239500 1.287854 1.287261 1.240207 1.246957 1.281775
#> [601] 1.290724 1.299552 1.220926 1.257597 1.314764 1.214511 1.258288 1.257949
#> [609] 1.245335 1.222206 1.262766 1.263947 1.217225 1.280631 1.239364 1.213604
#> [617] 1.308563 1.279451 1.249608 1.222276 1.244684 1.253285 1.243972 1.236974
#> [625] 1.276509 1.258001 1.209129 1.228395 1.272710 1.262572 1.262437 1.219342
#> [633] 1.249795 1.236677 1.227620 1.282915 1.247135 1.242227 1.218776 1.221471
#> [641] 1.313544 1.280433 1.231491 1.191716 1.235071 1.281538 1.301906 1.266510
#> [649] 1.227619 1.232029 1.238632 1.207711 1.339490 1.281932 1.227339 1.239257
#> [657] 1.220275 1.219547 1.265884 1.254320 1.253298 1.258763 1.269385 1.297690
#> [665] 1.203908 1.211166 1.268436 1.181921 1.249066 1.261866 1.250701 1.285410
#> [673] 1.201406 1.220100 1.262617 1.289723 1.223464 1.274698 1.221670 1.280084
#> [681] 1.233760 1.228923 1.260727 1.262743 1.226423 1.219082 1.271763 1.268282
#> [689] 1.237770 1.240299 1.232185 1.257823 1.222281 1.223527 1.253385 1.256216
#> [697] 1.236543 1.204826 1.254672 1.191135 1.211901 1.249701 1.289589 1.255077
#> [705] 1.243034 1.244403 1.174905 1.247132 1.180587 1.244566 1.244748 1.233480
#> [713] 1.333537 1.296036 1.264200 1.242617 1.200213 1.298223 1.244460 1.173555
#> [721] 1.253842 1.214076 1.199526 1.244108 1.193035 1.258349 1.220271 1.228449
#> [729] 1.305692 1.189133 1.268411 1.179981 1.225565 1.224030 1.278415 1.236635
#> [737] 1.280044 1.214668 1.241991 1.249968 1.238408 1.292161 1.231794 1.216158
#> [745] 1.263998 1.274351 1.236440 1.222036 1.284773 1.334296 1.230915 1.227357
#> [753] 1.256894 1.240276 1.307467 1.297989 1.162010 1.224568 1.240542 1.303653
#> [761] 1.284268 1.210363 1.229386 1.290378 1.269092 1.216465 1.242451 1.267445
#> [769] 1.285729 1.264518 1.159192 1.197642 1.231788 1.313301 1.278089 1.246516
#> [777] 1.218938 1.245409 1.199144 1.175423 1.253931 1.306511 1.204977 1.255896
#> [785] 1.209319 1.242299 1.248683 1.237087 1.235113 1.238732 1.254237 1.200974
#> [793] 1.205420 1.234557 1.238867 1.225397 1.166015 1.213065 1.223801 1.246712
#> [801] 1.269290 1.252318 1.322783 1.207832 1.276057 1.218278 1.260140 1.207129
#> [809] 1.172191 1.251105 1.320561 1.201245 1.247607 1.253172 1.220736 1.246252
#> [817] 1.249793 1.187866 1.322097 1.214089 1.189037 1.229918 1.206961 1.243869
#> [825] 1.219361 1.246971 1.280044 1.238349 1.258731 1.261874 1.270642 1.255853
#> [833] 1.260797 1.194658 1.282959 1.260625 1.266402 1.246058 1.286217 1.260794
#> [841] 1.217443 1.317192 1.245460 1.258224 1.209686 1.240157 1.229541 1.175757
#> [849] 1.253197 1.282599 1.204414 1.290809 1.297073 1.211563 1.278669 1.297340
#> [857] 1.269769 1.300097 1.249675 1.307957 1.265666 1.271515 1.220151 1.242657
#> [865] 1.224378 1.324918 1.245585 1.170966 1.234814 1.238239 1.272434 1.301724
#> [873] 1.255827 1.264471 1.189123 1.257762 1.263004 1.241666 1.241584 1.250800
#> [881] 1.258334 1.222356 1.206390 1.230696 1.190102 1.286941 1.254703 1.295861
#> [889] 1.253688 1.264698 1.263127 1.274070 1.249281 1.231606 1.230263 1.228047
#> [897] 1.303656 1.253797 1.268946 1.277759 1.236504 1.179328 1.223373 1.255858
#> [905] 1.211423 1.225271 1.207950 1.274936 1.265144 1.292822 1.230900 1.266533
#> [913] 1.225806 1.199318 1.311209 1.215372 1.242082 1.245048 1.213891 1.216487
#> [921] 1.269044 1.254154 1.265546 1.250473 1.205785 1.203049 1.287051 1.244598
#> [929] 1.254080 1.304040 1.249286 1.221959 1.240525 1.235157 1.196490 1.271973
#> [937] 1.202462 1.267877 1.208265 1.292415 1.190979 1.304544 1.264109 1.227190
#> [945] 1.264533 1.269351 1.254503 1.227728 1.262899 1.207285 1.186783 1.173650
#> [953] 1.277557 1.196527 1.206108 1.263991 1.181874 1.241089 1.197465 1.235719
#> [961] 1.332586 1.245408 1.215787 1.240714 1.301041 1.249250 1.273115 1.267648
#> [969] 1.280488 1.226847 1.222783 1.204186 1.207251 1.303066 1.227368 1.200214
#> [977] 1.288265 1.294696 1.249085 1.238368 1.275665 1.240872 1.209757 1.266749
#> [985] 1.231384 1.219225 1.240950 1.288110 1.236763 1.285549 1.225258 1.193140
#> [993] 1.219718 1.183379 1.225612 1.227567 1.320451 1.255594 1.269936 1.266373
#> attr(,"coef")
#> [1] "mmse"
#>
#>
#> attr(,"class")
#> [1] "cogxwalkr" "list"